IMPURITY DISPERSION IN THE TURNER MODEL FOR
FLOW IN A POROUS CHANNEL

V. I. Maron UDC 533.73

A one-dimensional model for longitudinal diffusion in a capillary with an immobile layer is
derived.

In the Turner model for a porous channel, the useful flow cross section is smaller than the total
cross section of the system, since a cylindrical liquid layer at the periphery is assumed immobile. With
this model it is possible to study impurity-transport effects in porous media due to the existence of dead~
end pores, whose contents participate in the mass transfer.

The axisymmetric concentration distribution in this system is described by a transport equation
of the type
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At the inner surface of the capillary there is no flow of material, so that
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We introduce the concentration averaged over the entire cross section
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and we construct a one~dimensional model of the diffusion in a flow with velocity profile (2) for this con-
centration. We proceed as in [2, 3]. We find '
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The effective coefficient K, in the one-dimensional diffusion model in the Turner system, (4), de-
pends on the ratio of the useful radius to the total radius.

This is one of the aspects which distinguish longitudinal transport in a Turner system from that in
a capillary; this point is mentioned in [1].

A more fundamental aspect of the deseription of impurity transport in the Turner system on the
basis of the one-dimensional model is that the quantity 6, does not give a complete picture of the distribu-
tion of the impurity concentration in the system. In this system there are two regions in which the mass
transport occurs in different manners.

The existence of a retarding layer leads to mass-transfer conditions different from those in the inner
part of the flow., For example, the mixing in the useful cross-section results from two mechanisms: con~
vective transport, with a velocity varying along the radius, and diffusion. In the fixed layer, on the other
hand, the mass transfer is due solely to diffusion.

In each of these regions (in the immobile layer and in the flow core) there is a scale time for equali-
zation of the concentration inhomogeneities over a transverse cross section; these times can be quite dif-
ferent from each other.

In the model described by (4), as in the model proposed in [1], there is no parameter which takes
mass transfer between the immobile layer and the useful flow cross section into account effectively.

To introduce such a parameter into the one-dimensional model for longitudinal mixing, we consider
two average concentrations in the immobile layer and in the useful flow cross section. We define these
concentrations, 6f and 6g, respectively, by '
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We are primarily interested in determining the Iatter concentration, since it is this concentration, rather
than 6, which corresponds to the mass distribution at the exit from the system.

It is not difficult to show that the functions 8¢, 6y, and 6y, are related linearly:
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Here 6y, is assumed to be known on the basis of solution of Eq. (4) for certain initial and boundary condi-
tions corresponding to the conditions under which the mass transfer occurs. To find the relationship be-
tween the unknown functions 6f and 6y, we assume that the distribution of 8¢ reproduces that of gy, with
a certain time lag 7,. More precisely, we set
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The time lag 7, is yet another parameter which (along with the effective diffusion coefficient) corre-
sponds to mass transfer; this time lag is introduced in the derivation of the one-dimensional diffusion
model for an effective account of mass transfer between the immobile layer and the useful flow cross sec-
tion. There are two ways to determine the magnitude of this time lag: the first is based on an analysis of
the corresponding experimental data with the help of solutions obtained on the basis of the one-dimensgional
model; the second is based on a more detailed analysis of the mass transfer between the immobile layer
and the flow and a solution of the three-dimensional problem describing this mass transfer.

To illustrate the second method of determining 74 we consider the following problem: we assume that
T¢ and Tg are the scale times for the equalization of the concentration inhomogeneities in the immobile
layer and in the useful cross section, respectively. We introduce yet another scale time, 7, which is the
time over which there is an important change in the concentration 6g. This scale time is governed by the
ratio of the length of the mixture region to the average flow velocity.

We assume the following inequalities among these scale times:
To > T P Tse . (8)

Under these conditions the relaxation time over which the inhomogeneities in the concentration distribution
in the immobile layer are equalized can be found by solving the problem giving an approximation descrip~
tion of the mass transfer between the flow and the layer:
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From the solution of this problem we find the relaxation time
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where 7, is the maximum eigenvalue of the Sturm - Liouville problem which arises in the solution of (9},
Xn(n) - 22X, () =0, X, (0) =X,(0)=0.
Substituting 6f from (7) into (6},
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we find an equation for the function 4.
To solve Eq. (7), we use a Laplace — Carson transformation:
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From (12) we find the transform Qg4:
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We see from this expression that the concentration 6g differs from 6y, and that it approaches the function
Om only asymptotically, in the limit T — « (p — 0).

We write the second factor on the right side as a series in powers of aexp (—74p}, & < 1:
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Using the retardation theorem to determine the inverse transform, we find that
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This analysis should be thought of as an example of constructing a model for longitudinal transport
in which there is a parameter other than the diffusion coefficient: the time lag. The time lag effectively
incorporates the features of the mass transfer near the inner surface of the tube.

In the Turner model the capillaries have stagnation zones; in flow through a capillary without stagna-
tion zones, the flow velocity near the inner surface is nevertheless much smaller than that near the axis.
A similar circumstance was noted by Taylor, who assumed that long "tails" are formed near the inner
surface as a result of slow erosion of impurities [4].

The method outlined above for constructing a model with two parameters — the diffusion coefficient
and the time lag — can be extended to this case,

NOTATION

c is the local impurity concentration;
0m  is the concentration averaged over the entire cross section of the system;
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0g is the concentration averaged over the useful cross section;

O is the average concentration in the immobile layer;
u(r) is the veloeity profile;
Uy is the average velocity;
D is the molecular diffusion coefficient;
Q is the transform of the function 6;
u(r) is the unit step function;
K« is the effective diffusion coefficient;
Ke=1+ reE W
i)
Y =UR/D is the dimensionless complex;
J,x) : is the Bessel function of the first kind;
An is the positive root of the equation J;(A,) = 0;
a is the radius of the useful cross section;
R is the radius of the system;
o =a/R;
A=1-p;
a = (1 _pZ) /PZ’
t = Dt/R? is the dimensionless time;
Tys T Tgr T are the scale times;
X, T,y are the spatial variables; .
1 is the dimensionless distance y /R from the boundary of the fixed layer,.
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